Course Title: Trigonometry

Board Approval Date: February 18, 2020
Credit / Hours: 1
Course Description:

A pre-Calculus course for the college bound student. The term includes a strong emphasis on circular and triangular trigonometric functions, graphs of trigonometric functions and identities and trigonometric equations, polar coordinates, and vectors. This course is primarily taught through lectures, small group activities, and projects dealing with real-life situations.

Learning Activities / Modes of Assessment:

Pre- tests	Scavenger Hunts
Teacher Observation	Nearpod
Kahoot, Quizizz and Quizlet	Edpuzzles
Notability	Flipgrid
Bell Ringers	Constructed Response Questions
Exit Tickets	Math Labs
Collaborative Projects	Task Cards
Small Group	Schoology Assignments
Whole Group	Error Analysis
Partner Work	Self-checking with answer key
Whiteboard Practice	Word Problems- real world
Review Games	application
Desmos Activities	Quizzes
GeoGebra	Tests
Think-Pair-Share	
Stations	

Instructional Resources:

```
Desmos
Geogebra
Online Practice Tools
Khan Academy
Teachers Pay Teachers
Teacher created resources
Kuta Software
Instructional Multimedia Tools
Collegeboard Practice Sets and Classroom
```


Curriculum:

Course: Trigonometry

Unit: Angles and Trigonometric Functions

Know:	Understand:	Do:
Angles can be measured in both degrees and radians. The ratios of the side lengths of a triangle can be defined with trigonometric functions. Using radian measure, trigonometric functions can be defined on all real numbers. How do you use trig functions to solve right triangles? How is radian measure defined? How do you convert between radian and degree measure? How do you find arc length and the area of a sector?	1. Angles and Their Measure 2. Arc Length and Area of a Sector 3. Velocity and Angular Velocity 4. Trig Functions on right triangles 5. Complementary and Cofunction Identities	The student will define a radian. The student will convert from degrees to radian and from radian to degrees. The student will find arc length, radius, or angle, given two of the three measures. The student will find area of a sector, angle, or radius, given the other two measures. The student will apply angular velocity, and velocity formulas to solve problems. The student will use the Pythagorean Theorem and given information to find all trig functions for a given angle in a right triangle. The student will, given one trig function of an angle, the student will find all other trig functions of the angle. The student will use trigonometric ratios and the Pythagorean Theorem to solve right triangles in application problems. The student will use basic cofunction identities to solve triangles.

		The student will use basic cofunction identities to simplify trigonometric expressions.

Unit: Acute Angles, Reference Angles, Right Triangles, and the Unit Circle.

Know:	Understand:	Do:
Using radian measure, trigonometric functions can be defined on all real numbers. Trigonometric functions are periodic. The unit circle is a means of finding trig functions for any given angle. Why is unit circle useful in illustrating trig functions on all real numbers? How do you use reference angles to find the value of any given angle?	1. Trig Functions of Acute Angles 2. Reference angles and non-acute angles. 3. Unit circle	The student will know the trig function values for 0,3045 , 60 and 90 degree angles. The student will use calculators to approximate trig functions. The student will find values of trig functions for angles larger than 90 degrees using reference angles. The student will set up a unit circle using special angles and knowledge of reference angles. The student will use the unit circle to evaluate trig functions. The student will use the unit circle to explain odd and even symmetry and the period of trig functions.

Unit: Graphs of Trigonometric Functions

Know:
Any cyclic occurrence can be
represented by a trig function. represented by a trig function.

Trig functions can be translated and transformed.

How do we use trig functions to describe cyclic behavior?

How do we translate and transform trig functions?

Understand:

1. Graph of Sine and Cosine
2. Translating and transforming graphs of sine and cosine.
3. Real world application of sine graphs.
4. Graphs of tangent, cotangent, secant and cosecant
5. Writing Equations of trig functions

Do:
The student will graph of sine or cosine for two cycles.

The student will plot graphs of the sine and cosine curves with vertical translations and amplitudes other than

The student will graph sine or cosine graph affected by horizontal and vertical translations.

The student will graph a sine or cosine curve including changes in amplitude, period, vertical and horizontal shifts and flips about the vertical or horizontal axis.

Students will gather periodic data from the internet or from scientific probes. They will plot this data and determine the sine graph that best fits this data. They will relate the meaning of amplitude, period, phase shift and vertical shift to this real world application.

The student will use a graphing calculator to plot a graph of periodic data and determine equation of best fit.

The student will plot the graphs of secant, cosecant, tangent, and cotangent with appropriate transformations.

The student will write an appropriate equation of a trig

		function given its graph

Unit: Trigonometric Identities

Know:
Understand:
Do:

Unit: Inverse Trig Functions

\(\begin{array}{l}Know:

\)| Understand: | Do: | |
| :--- | :--- | :--- |
| $\begin{array}{l}\text { Some trig functions must } \\ \text { have their domains restricted } \\ \text { so that we can find an inverse } \\ \text { of these functions. }\end{array}$ | $\begin{array}{l}\text { 1. Definition of Inverse Trig } \\ \text { Functions }\end{array}$ | $\begin{array}{l}\text { The student will use a right } \\ \text { triangle to solve problems of } \\ \text { the type: sin(arccos(3/4)). }\end{array}$ |
| $\begin{array}{l}\text { Trig equations can be solved } \\ \text { by using algebra and inverse } \\ \text { trig functions. }\end{array}$ | $\begin{array}{l}\text { 3. Trigonometric Equations } \\ \text { multiple angles. }\end{array}$ | $\begin{array}{l}\text { The student will use inverse } \\ \text { trig functions to find angle } \\ \text { measurements. }\end{array}$ |
| ----------------------------------- | | |

\(\left.$$
\begin{array}{l}\text { Why do make a trigonometric } \\
\text { function into an invertible } \\
\text { function. }\end{array}
$$

The student will graph

inverse trig functions.

How do we solve

trigonometric equations.\end{array} \quad \begin{array}{l}The student will use the

inverse trig functions to solve

linear and quadratic

equations.\end{array}\right\}\)| The student will substitute |
| :--- |
| identities to solve trig |
| equations. |

Understand:
Do:

Right triangles can be solved using the definitions of sine, cosine, and tangent.	1. Right Triangle Trigonometry and Applications	The student will use trigonometry to solve application problems involving right triangles.
If the triangle is not a right	2. Law of Sines	
triangle, most triangles can be solved using the Law of Sines or the Law of Cosines.	3. Law of Cosines	The student will use the Law of Sines to solve triangles including ambiguous cases.
Triangles can be used to solve various real world situations.	4. Applications	The students will use the Law of Sines in various application problems.
		The student will use the Law of Cosines to solve triangles.
How do you find the missing information from a given triangle?		The student will use The Law of Cosines when appropriate to solve application problems.
How do you use triangles to solve real world problems?		The student will apply triangle trigonometry to solve problems including areas, surveying and navigations problems.

Unit: Vectors

Know:	Understand:	Do:
Vectors are useful for understanding motion in two and three dimensions. Vectors can be used to study various applications including forces, and resultant motion due to wind and water currents. How do we use vectors to describe motion? How do we use vectors to describe resultant forces? How do we use vectors to show resultant direction due to wind or water currents?	1. Introduction to Vectors 2. Applications of Vectors	The student will calculate the resultant vector found from combinations of addition, subtraction, and scalar multiplication. The student will find the magnitude of a vector. The student will find the angle between two given vectors. The student will find the dot product between two vectors. The student will use the dot product to show two vectors are perpendicular. The student will find the cross product of two given vectors. The student will show the resulting vector is perpendicular to the two given vectors. The student will use vectors to solve real world applications.

Unit: Polar Coordinates and graphing

Know:	Understand:	Do:
Points are found in polar graphing by how far they are away from the pole (origin) and the angle they make with the positive horizontal axis. Basic equations determine graphs of lines, circles, cardioids, limacons, lemniscates and roses. How do we graph points in polar form? How do we determine the shape of a polar graph?	1. Introduction to Polar, graphing points and converting to polar representation 2. Graphing lines and circles 3. Cardioids and limacons 4. Roses and lemniscates.	The student will convert between Cartesian Coordinates and Polar Coordinates. The student will graph points from polar and cartesian forms. The student will write equations and graph simple lines and circles in polar form. The student will graph cardiods and limacons. The student will graph roses and lemniscates.

Unit: Trig Form of Complex Numbers
\(\begin{array}{l}Know:

\)| Understand: | Do: | |
| :--- | :--- | :--- |
| $\begin{array}{l}\text { Complex numbers can be } \\ \text { represented using } \\ \text { trigonometry }\end{array}$ | $\begin{array}{l}\text { 1. Operations on Complex } \\ \text { Numbers }\end{array}$ | $\begin{array}{l}\text { The student will perform } \\ \text { mathematical operations on } \\ \text { complex numbers. }\end{array}$ |
| Polar representation of | | |
| complex numbers simplify | | |
| computations | | |

2. Trig Form of Complex

Numbers\end{array}$\left.\quad \begin{array}{l}\text { 3. Product and Quotient } \\
\text { Theorems }\end{array} \quad \begin{array}{l}\text { The student will convert } \\
\text { standard form complex } \\
\text { number to trig form and vice } \\
\text { versa. }\end{array}\right\}$

Pacing Guide

Course:	
Course Unit (Topic) Periods)	Length of Instruction (Class
Angles and Trigonometric Functions	10 days
Acute Angles, Reference Angles, Right Triangles, and the Unit Circle	10 days
Graphs of Trigonometric Functions	15 days
Trigonometric Identities	10 days
Inverse Trig Functions	10 days
Triangle Trigonometry	10 days
Vectors	15 days
Polar Coordinates and graphing	5 days
Trig Form of Complex Numbers	5 days

