Dover Area School District Curriculum K-U-D

Standards
CC.2.1.3.B. 1 Apply place-value understanding and properties of operations to perform multidigit arithmetic.
CC.2.1.3.C. 1 Explore and develop an understanding of fractions as numbers.

Eligible Content M03.A-T.1.1.1 Round two- and three-digit whole numbers
to the to the
hundred, respectively
M03.A-T.1.1.2 Add two- and three-digit whole numbers (limit
sums from 100 through 1,000) and/or subtract two- and three-digit numbers from three-digit whole numbers. M03.A-T.1.1.3 Multiply one-digit whole numbers by two digit
multiples of 10 (from 10 through 90). M03.A-T.1.1.4 Order a set of whole numbers from least to multiply greatest or greatest to least (up through 9,999 , and limit sets to no more than four numbers).
M03.A-F.1.1.1 Demonstrate that when a whole or set is partitioned into y equal parts, the fraction $1 / y$ represents 1 part of the whole and/or the fraction x / y represents x equal limit numerators to whole numbers less than the denominator; and no simplification necessary). M03.A-F 1.1.2 Represent fractions on a number line (limit denominators to $2,3,4,6$, and 8 ; limit numerators to whole numbers less than the denominator; and no simplification necessary). M03.A-F.1.1.3 Recognize and generate simple equivalent fractions (limit the
denominators to 1, 2, 3, 4, 6 , and 8 and limit numerators to whole \quad norle 1:1/2 number line numbers as fractions, and/or generate fractions that are equivalent to whole numbers (limit denominators to 1,2 $3,4,6$, and 8). Example 1 : Express 3 in the form $3=3 / 1$, 3, 4,6 , and 8). Example 1: Express 3 in the form $3=3$
Example 2: Recognize that $6 / 1=6$. M03.A-F.1.1. Compare two fractions with the same denominator (limit denominators to $1,2,3,4,6$, and 8), using the symbols >, $=$, or $<$, and/or justify the conclusions.
round
ten

Know
Understand
Do

A digit's position in a number determine's it value allows us to accurately perform multi-digit operations.

whole set
 whole set

fraction
numerator
denominato
number line
equivalent fractions
hole number
sums
order
reatest
\square
whole set
partition
fraction
numerator
denominator
number line
equivalent fractio

Standards	Eligible Content	Know	Understand	Do
CC.2.2.3.A. 1 Represent and solve problems involving multiplication and division.	M03.B-O.1.1.1 Interpret and/or describe products of whole numbers (up to and including 10×10). Example 1: Interpret 35 as the total number of objects in 5 groups, each containing 7 objects. Example 2: Describe a context in which a total number of objects can be expressed as $5 \times$ 7. M03.B-O.1.1.2 Interpret and/or describe whole-number quotients of whole numbers (limit dividends through 50 and limit divisors and quotients through 10). Example 1: Interpret $48 \div 8$ as the number of objects in each share when 48 objects are partitioned equally into 8 shares, or as a number of shares when 48 objects are partitioned into equal shares of 8 objects each. Example 2: Describe a context in which a number of shares or a number of groups can be expressed as $48 \div 8$. M03.B-O.1.2.1 Use multiplication (up to and including 10×10) and/or division (limit dividends through 50 and limit divisors and quotients through 10) to solve word problems in situations involving equal groups, arrays, and/or measurement quantities. M03.B-O.1.2.2 Determine the unknown whole number in a multiplication (up to and including 10×10) or division (limit dividends through 50 and limit divisors and quotients through 10) equation relating three whole numbers. Example: Determine the unknown number that makes an equation true.	factors products quotients divisors unknown number	Representations can be used to solve multiplication and division problems.	Represent and solve problems. Demonstrate an understanding of properties of multiplication. Demonstrate an understanding of the relationship between multiplication and division. Demonstrate fluency. Identify and explain patterns in arithmetic.
CC.2.2.3.A. 2 Understand properties of multiplication and the relationship between multiplication and division. CC.2.2.3.A. 3 Demonstrate multiplication and division fluency	M03.B-O.2.1.1: Apply the commutative property of multiplication (not identification or definition of the property). M03.B-O.2.1.2: Apply the associative property of multiplication (not identification or definition of the property). M03.B-O.2.2.1: Interpret and/or model division as a multiplication equation with an unknown factor. Example: Find $32 \div 8$ by solving $8 \times ?=32$.	commulative property associative property division model unknown factor	Multiplication and division and the relationship between the two can help the learner to be an efficient problem solver.	Use multiplication properties Multiply numbers if a different order to arrive at the same product Use a missing factor to solve a related division fact.

Standards	Eligible Content	Know	Understand	Do
CC.2.2.3.A. 4 Solve problems involving the four operations, and identify and explain patterns in arithmetic	M03.B-O.3.1.1 Solve two-step word problems using the four operations (expressions are not explicitly stated). Limit to problems with whole numbers and having wholenumber answers. M03.B-O.3.1.2 Represent two-step word problems using equations with a symbol standing for the unknown quantity. Limit to problems with whole numbers and having whole-number answers. M03.B-O.3.1.3 Assess the reasonableness of answers. Limit problems posed with whole numbers and having whole-number answers. M03.B-O.3.1.4 Solve two-step equations using order of operations (equation is explicitly stated with no grouping symbols). M03.B-O.3.1.5 Identify arithmetic patterns (including patterns in the addition table or multiplication table) and/or explain them using properties of operations. Example 1: Observe that 4 times a number is always even. Example 2: Explain why 6 times a number can be decomposed into three equal addends. M03.B-O.3.1.6 Create or match a story to a given combination of symbols (,,$+- \times, \div,<,>$, and $=$) and numbers. M03.B-O.3.1.7 Identify the missing symbol (,,$+- \times, \div,<$, $>$, and $=$) that makes a number sentence true.	two-step word problem operation equation symbol unknown quantity assess reasonableness order of operations arithmatic patterns decompose addends even odd	Solve problems using the four operations and solve patterns to solve real-world problems.	Solve basic facts. Write number models Ability to assess whether an answer is reasonable. Counting by $2 \mathrm{~s}, 5 \mathrm{~s}, 10 \mathrm{~s}$. fact families
CC.2.3.3.A. 1 Identify, compare, and classify shapes and their attributes. CC.2.3.3.A. 2 Use the understanding of fractions to partition shapes into parts with equal areas and express the area of each part as a unit fraction of the whole.	M03.C-G.1.1.1: Explain that shapes in different categories may share attributes and that the shared attributes can define a larger category. Example 1: A rhombus and a rectangle are both quadrilaterals since they both have exactly four sides. Example 2: A triangle and a pentagon are both polygons since they are both multi-sided plane figures. M03.C-G.1.1.2: Recognize rhombi, rectangles, and squares as examples of quadrilaterals and/or draw examples of quadrilaterals that do not belong to any of these subcategories. M03.C-G.1.1.3: Partition shapes into parts with equal areas. Express the area of each part as a unit fraction of the whole. Example 1: Partition a shape into 4 parts with equal areas. Example 2: Describe the area of each of 8 equal parts as $1 / 8$ of the area of the shape.	attributes rhombi rectangle square quadrilateral area unit fraction	Use attributes of shapes to identify, compare, and classify.	Partition two-dimensional shapes into equal parts. Express the area of a partition as a unit fraction of the whole.
CC.2.4.3.A. 1 Solve problems involving measurement and estimation of temperature, liquid volume, mass or length	M03.D-M.1.2.1 Measure and estimate liquid volumes and masses of objects using standard units (cups [c], pints [pt], quarts [qt], gallons [gal], ounces [oz.], and pounds [lb]) and metric units (liters [1], grams [g], and kilograms [kg]). M03.D-M.1.2.2 Add, subtract, multiply, and divide to solve onestep word problems involving masses or liquid volumes that are given in the same units. M03.D-M.1.2.3 Use a ruler to measure lengths to the nearest quarter inch or centimeter.	liquid volume mass cups, pints, quarts, gallons, ounces, liters, grams, kilograms inch, quarter inch estimation	What operation(s) and unit of measure should be used to solve measurement problems	Solve problems involving measurement and estimation of temperature, liquid volume, mass, and length.
CC.2.4.3.A. 2 Tell and write time to the nearest minute and solve problems by calculating time intervals.	M03.D-M.1.1.1 Tell, show, and/or write time (analog) to the nearest minute. M03.D-M.1.1.2 Calculate elapsed time to the minute in a given situation (total elapsed time limited to 60 minutes or less).	elapsed time minute hour	Calculate time in order to solve time interval problems.	Tell time (analog). Show and/or wirote time (analog). Show, and/or write time (analog). Calculate elapsed time to the minute for a given situation.

Standards
CC.2.4.3.A. 3 Solve problems and make change involving money using a combination of coins and bill

CC.2.4.3.A. 4

Represent and interpret data using tally charts, tables, pictographs, line plots, and bar graphs.

Eligible Content

Know

compare

value
penny

M03.D-M.2.1.1: Complete a scaled pictograph and a scaled bar graph to represent a data set with several categories (scales limited to $1,2,5$, and 10). M03.D-M.2.1.2: Solve one- and two-step problems usin information to interpret data presented in scaled pictographs and scaled bar graphs (scales limited to 1,2 , 5 , and 10).
Example 1: (One-step) "Which category is the largest?" Example 2: (Two-step) "How many more are in category A than in category B?
M03.D-M.2.1.3: Generate measurement data by
measuring lengths using rulers marked with halves and fourths of an inch. Display the data by making a line plot, where the horizontal scale is marked in appropriat units-whole numbers, halves, or quarters
n one type of display to another. Limit to pictographs, tally charts, bar graphs, and tables

Convert a tally chart to a bar graph
M03.D-M.3.1.1 Measure areas by counting unit squares (square cm , square m , square in., square ft , and nonstandard square units).
M03.D-M.3.1.2 Multiply side lengths to find areas of rectangles with whole-number side lengths in the contex represent whole-wumber products as rectangular areas in mathematical reasoning.
M03.D-M.4.1.1 Solve real-world and mathematical problems involving perimeters of polygons, including finding the perimeter given the side lengths, finding an unknown side length, exhibiting rectangles with the same perimeter and different areas, and exhibiting rectangles with the same area and different perimeters. Use the same unt units throughout the problem.
perimeter
polygons engths unit

Understand
Do
dime
quarter
change
coins
bills
round

The value of each coin and using that understanding to make change

Use various graphs to create and interpret data.

unit square

area
multiply whole number
measure

