Standards	Eligible Content	Know	Understand	Do
CC.2.1.8.E. 1 Distinguish between rational and irrational numbers using their properties. CC.2.1.8.E. 4 Estimate irrational numbers by comparing them to rational numbers. CC.2.1.HS.F.2: Apply properties of rational and problems.	A1.1.1.1 Represent and/or use numbers in equivalent forms (e.g., integers, fractions, decimals, percents, square roots, and exponents). A1.1.1.1.1 Compare and/or order any real numbers.	Recognize number sets in the number systems Algebraic properties Expressions, equations, and inequalities (applied to real life situations) Operation based vocabulary All representations of numbers have a numerical value in a common form	Solutions to equations and inequalities are the numerical values that will make the equation true Numbers belong to different groups/categories Words or phrases can be represented by numbers and variables Properties are used to simplify expressions	Compare and/or order any real numbers. Note: Rational and irrational may be mixed. Simplify/evaluate expressions involving properties/laws of exponents, roots, and/or absolute values to solve problems.
CC.2.2.8.B.1: Apply concepts of radicals and integer exponents to generate equivalent expressions. CC.2.1.HS.F. 1 Apply and extend the properties of exponents to solve problems with rational exponents.	A1.1.1.3 Use exponents, roots, and/or absolute values to solve problems. A1.1.1.3.1 Simplify/evaluate expressions involving properties/laws if exponents, roots, and/or absolute values to solve problems.	Order of operations Inverse operations Operation based vocabulary Absolute value Perfect square All representations of numbers have a numerical value in a common form Distinguish the difference between perfect and nonperfect square Absolute value represents the distance the number is from zero	Properties are used to simplify expressions	Simplify/evaluate expressions involving properties/laws of exponents, roots, and/or absolute values to solve problems. Solve two-step equations and inequalities.
CC.2.1.HS.F.3: Apply quantitative reasoning to choose and interpret units and scales in formulas, graphs, and data displays. problems and to use units as a way to understand problems and to guide the solution of multi-step Problems. appropriate those a level of accuracy reporting quantities. CC.2.2.8.B.3: Analyze and solve linear equations and pairs of simultaneous linear equations. CC.2.2.8.8.C.1: Define, evaluate, and compare functions CC.2.2.8. relationshi. Use concepts of functions to model CC.2.2.HS Whie functions or sequences that quantics. inequalities to describe numbers or relationships. CC.2.2.HS.D.8: Apply inverse operations to solve equations or formulas for a given variable. CC.2.2.HS.D.9: Use reasoning to solve equations and justify the solution method. CC.2.2.HS.D.10: Represent, solve, and interpret equations/inequalities and systems of equations/inequalities algebraically and graphically. CC.2.2.7.B.3: Model and solve real-world and mathematical problems by using and connecting numerical, algebraic, and/or graphical representations.	A1.1.2.1.1 Write, solve, and/or apply a linear equation (including problem situations). A1.1.2.1.2 Use and/or identify an algebraic property to justify any step in an equation-solving process. Note: Linear equations only." "A1.1.2.1.3 Interpret solutions to problems in the context of the problem ituation. Note: Linear equations only." A1.1.1.4.1 Use estimation to solve problems.	Equations have various numbers of solution Equation based vocabulary - variable, constant, coefficient, solution, inverse operation	A real world scenario can be represented and solved using an equation Properties of equality are used to solve equations	Write, solve, and/or apply a linear equation (including problem situations). Use and/or identify an algebraic property to justify any step in an equation-solving process. Use estimation to solve problems Interpret solutions to problems in the context of the problem situation.

Standards	Eligible Content	Know	Understand	Do
	A1.1.3.1.3 Interpret solutions to problems in the context of the problem situation. Note: Linear inequalities only. A1.1.3.1.1 Write or solve compound inequalities and/or graph their solution sets on a number line (may include absolute value inequalities). A1.1.3.1.2 Identify or graph the solution set to a linear inequality on a number line.	Inequalities have various solutions solutions can be represented graphically Equations based vocabulary	Inequalities can have a range of solutions and can be represented visually on a number line	Write and/ or solve compound inequalities and/or graph their solution sets on a number line (may include absolute value inequalities) Identify or graph the solution set to a linear inequality on a number line Interpret solutions to problems in the context of the problem situation.
CC.2.2.8.C. 1 Define, evaluate, and compare functions. CC.2.2.8.8.C.2: Use concepts of functions to model relationships between quantities. CC.2.2.HS.C.1: Use the concept and notation of functions to interpret and apply them in terms of their context. CC.2.2.HS.C.2: Graph and analyze functions and use their properties to make connections between the different representations. CC.2.2.HS.C.3: Write functions or sequences that model relationships between two quantities. CC.2.4.HS.B.2: Summarize, represent, and interpret data on two categorical and quantitative variables.	A1.2.1.1.1 Analyze a set of data for the existence of a pattern and represent the pattern algebraically and/or graphically A1.2.1.1.2 Determine whether a relation is a function, given a set of points or a graph. A1.2.1.1.3 Identify the domain or range of a relation (may be presented as ordered pairs, a graph, or a table)	What makes a relation a function Domain (x) and range (y) of a relation A function is a relation where each input has exactly one output	Data displaying relationship between two variables can be represented in a table, graph, ordered pairs, or equation	Analyze a set of data for the existence of a pattern and represent the pattern algebraically and/or graphically. Determine whether a relation is a function, given a set of points or a graph. Identify the domain or range of a relation (may be presented as ordered pairs, a graph, or a table).
CC.2.1.HS.F.3: Apply quantitative reasoning to choose and interpret units and scales in formulas, graphs, and data displays. CC.2.1.HS.F.4: Use units as a way to understand problems and to guide the solution of multi-step problems. CC.2.2.8.B.2: Understand the connections between proportional relationships, lines, and linear equations. CC.2.2.8.C.1: Define, evaluate, and compare functions. CC.2.2.8.C.2: Use concepts of functions to model relationships between quantities. CC.2.2.HS.C.2: Graph and analyze functions and use their properties to make connections between the different representations. CC.2.2.HS.C.3: Write functions or sequences that model relationships between two quantities. CC.2.2.HS.C.4: Interpret the effects transformations have on functions and find the inverses of functions. CC.2.2.HS.C.6: Interpret functions in terms of the situations they model. situations they model. ce.2.4. H.B.B. Summarize, represent, and interpret data on two categorical and quantitative variables .	A1.2.1.2.1 Create, interpret, and/or use the equation, graph, or table of a linear function. A1.2.1.2.2 Translate from one representation of a linear function to another (i.e., graph, table, and equation).	Parts of a coordinate plane Relation Function Constant rate of change	Relations can have multiple representations	Create, interpret, and/or use the equation, graph, or table of a linear function. Translate from one representation of a linear function to another (i.e., graph, table, and equation)

Standards

Eligible Content

Know relationships between quantities.
CC.2.2.HS.C.1: Use the concept and notation of functions to interpret and apply them in terms of the context.
C.2.2.HS.C.2: Graph and analyze functions and use their properties to make connections between the different representations.
CC.2.2.HS.C.3: Write functions or sequences that model relationships between two quantities.
CC.2.2.HS.C.5: Construct and compare linear,
quadratic, and exponential models to solve problem CC.2.2.HS.C.6: Interpret functions in terms of the situations they model.
CC.2.4.HS.B.1: Summarize, represent, and interpret data on a single count or measurement variable.
CC.2.2.HS.C.6: Interpret functions in terms of the situations they model

Analyze and/or interpret bivariate data displayed in multiple representations.
CC.2.4.HS.B.2: Summarize, represent, and interpret
data on two categorical CC.2.4.HS.B.3: Analyze linear models to make
interpretations based on the data.
CC.2.1.HS.F.5: Choose a level of accuracy appropriate to limita
reporting quantities.
CC.2.2.8.B.3: Analyze and solve linear equations an pairs of simultaneous linear equations.
CC.2.2.HS.D.7: Create and graph equations or
inequalities to describe numbers or relationships inequalities to describe numbers or relationships.
CC. 2.2.HS.D. 9 Use reasoning to solve CC.2.2.2.HS.D.9: Use reasoning to solve equations and
justify the solution method. CC 2 HS D. 10: Represent
CC.2.2.IS.D.10: Represent, solve, and interpret equations/inequalities algebraically and graphically. CC.2.1.HS.F.5: Choose a level of accuracy appropriate to limitations on measurement when reporting quantities.
CC.2.2.HS.D.7: Create and graph equations or inequalities to describe numbers or relationships. CC.2.2.HS.D. 10: Represent, solve, and interpret equations/inequalities and systems of
equations/inequalities algebraically and graphically. CC.2.2.HS.D.1 Interpret the structure of expressions to represent a quantity in terms of its context. CC.2.2.HS.D. 2 Write expressions in equivalent forms to solve problems.
CC.2.2.HS.D. 3 Extend the knowledge of arithmetic operations and apply to polynomials.
CC.2.2.Hs.D. 5 Use polynomial identities to solve
CC.2.2.HS.D. 6 Extend the knowledge of rational
functions to rewrite in equivalent forms.

A1.2.2.1.1: Identify, describe, and/or use constant

rates of change.
A1.2.2.1.2: Apply the concept of linear rate of A1.2.2.1.2: Apply the concept of lin
change (slope) to solve problems.
A1.2.2.1.3: Write or identify a linear equation when given the graph of the line, two points on the line, or Note: Linear puation the line.
Note: Linear equation may be in point-slope, A1.2.2.1.4 Determine the slope and/or

A system may have one, no, or infinite solutions

There are different methods to solving systems of
Graphs for systems will look different depending on

The graph of a linear inequality or system represents solutions for the inequality or system
Equation/inequality based vocabulary
Graphs of linear inequalities differ based on the
represented by a linear equation or graph.
1.2.2.2.1 Draw, identify, find, and/or write an equation for
,

A1.1.2.2.1 Write and/or solve a syster of ising
A....2.2.1 Write and/or solve a system of linear graphing, substitution, and/or elimination. Note: Limit systems to two linear equations.
A1.1.2.2.2 Interpret solutions to problems in the context of the problem situation. Note: Limit systems to two linear equations.
1.1.3.2.1 Write and/or solve a system of linear inequalities using graphing. Note: Limit systems to two linear inequalities.
A1.1.3.2.2 Interpret solutions to problems in the context of he problem situation. Note: Limit system two linear inequalities.
A1.1.1.5.1 Add, subtract, and/or multiply polynomial expressions (express answers in simplest form).
Note: Nothing larger than a binomial multiplied by trinomial.
A1.1.1.5.2 Factor algebraic expressions, including
difference of squares and trinomials.
Note: Trinomials are limited to the form
$\mathrm{ax} 2+\mathrm{bx}+\mathrm{c}$ where a is equal to 1 after factoring out
all monomial factors.
A1.1.1.5.3 Simplify/reduce a rational algebraic
he system true
Equation based vocabulary equations.
Graphs for
he solution type
range of solutions number of terms Factor expressions
${ }^{\text {rep }}$
\qquad
expression.
Polynomials are classified based on degree and
Polynomial, monomial, binomial, trinomial Operations can be performed to polynomials and rational expressions
You must always look for a gcf first when factoring Factoring can be used to simplify rational

Understand

Slope is a rate of change
The multiple representatit
Theresentions of a linear equation The relationship between parallel and perpendicular lines and their slopes
Recognize x - and y -
Recognize x - and y - intercepts
There are different types
There are different types of slope, which represents a constant rate of change.

Linear Equations can be represented in multiple

 forms.Linear Equations can be represented in multiple
forms.

Identify, describe, and/or use constant rates of change. Write or identify a linear equation when given the grap of the line, two points on the line, or the slope and a point on the line.
Determine the slope and/or y-intercept represented by a linear equation or graph.
Write, solve and/ or apply a linear equation (including oblem situations)
Inerpret solutions to problems in the context of the apply the conce (linear equations only). solve problems. olve problems.

Draw, identify, find, and/or write an equation for a line of best fit for a scatter plot

Write and/or solve a system of linear equations (including problem situations) using graphing, substitution and/or elimination. Interpret solutions to problems in the context of the problem situation

Standards	Eligible Content	Know	Understand	Do
CC.2.1.6.E.E. Develop and/or apply number theory concepts to find common factors and multitis. CC.2.1.HS.F.2 Apply properties of rational and irrational numbers to solve real-world or mathematical problems.	A1.1.1.2.1 Find the Greatest Common Factor (GCF) and/or the Least Common Multiple (LCM) for sets of monomials.	You must always look for a gef first when factoring	The difference between LCM and GCF	Find the greatest common factor and/or the least common multiple for sets of monomials.
CC.2.1.HS.F. Apply and extend the properties of exponents to solve problems with rational exponents.	A1.1.1.1.1.2 Simplify square roots (e.g., ${ }^{2} 24=2 \sqrt{6}$).	Radical, radicand, index, simplify	Radicals and exponents are inverses	Simplify square roots
CC.2.1.HS.F. 1 Apply and extend the properties of exponents to solve problems with rational exponents. CC.2.2.2.8.B. 1 Apply concepts of radicals and integer exponents to generate equivalent expressions	A1.1.1.3.1 Simplify/evaluate expressions involving properties/laws of exponents, roots, and/or absolute values to solve problems. Note: Exponents should be integers from -10 to 10 .	The properties of exponents Base, coefficient, exponents Simplified answers should not contain negative or zero exponents	Expressions can be simplified	Simplify/evaluate expressions involving properties/laws of exponents, roots, and/or absolute values to solve problems
CC.2.4.HS.B. 1 Summarize, represent, and interpret data on a single count or measurement variable. CC. 2.4.HS.B.3 Analyze linear models to make interpretations based on the data.	A1.2.3.1.1 Calculate and/or interpret the range, quartiles, and interquartile range of data.	Measures of center, sprea, and position	Depending on the data set, different central tendencies are more representative	Calculate and/or interpret the range, quartiles, and interquartile range of data.
CC.2.4.HS.B. 1 Summarize, represent, and interpret data on a single count or measurement variable. CC.2.4.HS.B. 3 Analyze linear models to make interpretations based on the data. CC.2.4.HS.B. 5 Make inferences and justify conclusions based on sample surveys, experiments, and observational studies.	A1.2.3.2.1 Estimate or calculate to make predictions based on a circle, line, bar graph, measure of central tendency, or other representation. A1.2.3.2.2 Analyze data, make predictions, and/or answer questions based on displayed data (box-and whisker plots, stem-and-leaf plots, scatter plots, measures of central tendency, or other representations). A1.2.3.2.3 Make predictions using the equations or graphs of best-fit lines of scatter plots.	Data vocabulary - line of best fit, stem and leaf, scatter plot, box and whisker, measures of central tendency The different graphical representations of data A box and whisker plot separates the data into four equal portions	Different representations of graphs can be used to find missing information and make predictions related to that data.	Estimate or calculate to make predictions based on a circle, line, bar graph, measure of central tendency, or other representation. Analyze data, make predictions, and/or answer questions based on displayed data (box-and- whisker plots, stem-and-leaf plots, scatter plots, measures of central tendency, or other representations). Make predictions using the equations or graphs of bestfit lines of scatter plots.
CC.2.4.7.B. 3 Investigate chance processes and develop, use, and evaluate probability models. CC.2.4.HS.B. 4 Recognize and evaluate random processes underlying statistical experiments. CC.2.4.HS.B. 7 Apply the rules of probability to compute probabilities of compound events in a uniform probability model.	A1.2.3.3.1 Find probabilities for compound events (e. g., find probability of red and blue, find probability of red or blue) and represent as a fraction, decimal, or percent.	How to find the probability of real-life situations How to find the number of possible outcomes	Probability can be used to make statistical predictions	Find probabilities for compound events (e.g., find probability of red and blue, find probability of red or blue) and represent as a fraction, decimal, or percent.

